Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1968 Jun;37(3):694-702.
doi: 10.1083/jcb.37.3.694.

Functional consequences of ultrastructural geometry in "backwards" fluid-transporting epithelia

Affiliations

Functional consequences of ultrastructural geometry in "backwards" fluid-transporting epithelia

J M Diamond et al. J Cell Biol. 1968 Jun.

Abstract

Many fluid-transporting epithelia possess dead-end, long, and narrow channels opening in the direction to which fluid is being transported (basal infoldings, lateral intercellular spaces, etc.). These channels have been thought to possess geometrical significance as standing-gradient flow systems, in which active solute transport into the channel makes the channel contents hypertonic and permits water-to-solute coupling. However, some secretory epithelia (choroid plexus, Malpighian tubule, rectal gland, etc.) have "backwards" channels opening in the direction from which fluid is being transported. It is shown that these backwards channels can function as standing-gradient flow systems in which solute transport out of the channel makes the channel contents hypotonic and results in coupled water flow into the channel mouth. The dependence of the transported osmolarity (isotonic or hypertonic) on channel radius, length, and other parameters is calculated for backwards channels for values of these parameters in the physiological range. In addition to backwards channels' being hypotonic rather than hypertonic, they are predicted to differ from "forwards" channels in that some restrictions are imposed by the problem of solute exhaustion, and in the presence of a sweeping-in effect on other solutes which limits the solutes that may be transported.

PubMed Disclaimer

References

    1. Fed Proc. 1966 Sep-Oct;25(5):1458-63 - PubMed
    1. Anat Rec. 1963 Sep;147:95-127 - PubMed
    1. J Cell Biol. 1966 Aug;30(2):237-68 - PubMed
    1. J Gen Physiol. 1967 Sep;50(8):2031-60 - PubMed
    1. Circulation. 1960 May;21:955-67 - PubMed