Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr 1;303(1):78-92.
doi: 10.1006/abio.2002.5581.

A mathematical analysis using fractals for binding interactions of nuclear estrogen receptors occurring on biosensor surfaces

Affiliations

A mathematical analysis using fractals for binding interactions of nuclear estrogen receptors occurring on biosensor surfaces

Anand Ramakrishnan et al. Anal Biochem. .

Abstract

A mathematical approach using fractal concepts is presented for modeling the binding and dissociation interactions between analytes and nuclear estrogen receptors (ER) occurring on surface plasmon resonance biosensor chip surfaces. A kinetic knowledge of the binding interactions mediated by ER would help in better understanding the carcinogenicity of these steroidogenic compounds and assist in modulating these reactions. The fractal approach is applied to analyte-ER interaction data obtained from literature. Numerical values obtained for the binding and dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, D(f)) present on the biosensor surface. For example, a single-fractal analysis is used to describe the binding and dissociation phases for the binding of estradiol and ERalpha in solution to clone 31 protein immobilized on a biosensor chip (C-S. Suen et al., 1998, J. Biol. Chem. 273(42), 27645-27653). The binding and the dissociation rate coefficients are 27.57 and 8.813, respectively, and the corresponding fractal dimensions are 1.986 and 2.268, respectively. In some examples dual-fractal models were employed to obtain a better fit of either the association or the dissociation phases or for both. Predictive relationships are developed for (a) the binding and the dissociation rate coefficients as a function of their respective fractal dimensions and (b) the ratio K(A) (= k/k(d)) as a function of the ratio of the fractal dimensions (D(f)/D(fd)). The analysis should provide further physical insights into the ER-mediated interactions occurring on biosensor and other surfaces.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources