Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Feb 28;357(1418):143-53.
doi: 10.1098/rstb.2001.1025.

Elastomeric gradients: a hedge against stress concentration in marine holdfasts?

Affiliations
Review

Elastomeric gradients: a hedge against stress concentration in marine holdfasts?

J Herbert Waite et al. Philos Trans R Soc Lond B Biol Sci. .

Abstract

The byssal threads of marine mussels are elastomeric fibres with a great capacity for absorbing and dissipating energy. Up to 70% of the total absorbed energy can be dissipated in the byssus. Because byssal threads attach the mussel to hard inert surfaces in its habitat, they must combine the need to be good shock absorbers with appropriate matching of Young's modulus between living tissue and a hard sub-stratum such as stone - stiffnesses that can differ by five orders of magnitude. Recent data suggest that improved modulus matching and decreased stress concentration between different portions of the byssus is achieved by the use of protein gradients. Protein gradients in byssal threads are constructed using natural macromolecular chimeras having a central collagenous domain, variable flanking modules and histidine-rich amino and carboxy termini. Stiff silk-like flanking modules prevail distally, while at the animal end, rubbery modules resembling elastin predominate. In between the two thread ends there is a mix of both module types. The histidine-rich termini provide metal binding/cross-linking sites, while collagen domains may confer self-assembly on all parts of the structure. A graded axial distribution of flanking modules is expected to moderate stress concentration in joined materials having disparate moduli.

PubMed Disclaimer

References

    1. J Mol Evol. 2000 Oct;51(4):329-38 - PubMed
    1. J Exp Biol. 1996;199(Pt 4):1005-17 - PubMed
    1. J Exp Zool. 1986 Oct;240(1):1-7 - PubMed
    1. Eur J Biochem. 1968 May;4(4):555-60 - PubMed
    1. J Exp Biol. 1995 Mar;198(Pt 3):633-44 - PubMed