Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun 7;277(23):20651-9.
doi: 10.1074/jbc.M200752200. Epub 2002 Mar 23.

The role of region IVS5 of the human cardiac calcium channel in establishing inactivated channel conformation: use-dependent block by benzothiazepines

Affiliations
Free article

The role of region IVS5 of the human cardiac calcium channel in establishing inactivated channel conformation: use-dependent block by benzothiazepines

Ilona Bodi et al. J Biol Chem. .
Free article

Abstract

The role of inactivated channel conformation and use dependence for diltiazem, a specific benzothiazepine calcium channel inhibitor, was studied in chimeric constructs and point mutants created in the IVS5 transmembrane segment of the L-type cardiac calcium channel. All mutations, chimeric or point mutations, were restricted to IVS5, while the YAI-containing segment in IVS6, i.e. the primary interaction site with benzothiazepines, remained intact. Slowed inactivation rate and incomplete steady state inactivation, a behavior of some mutants, were accompanied by a reduced or by a complete loss of use-dependent block by diltiazem. Single channel properties of mutants that lost use dependence toward diltiazem were characterized by drastically elongated mean open times and distinctly slower time constants of open time distribution. Mutation of individual residues of the IVMLF segment in IVS5 did not mimic the complete loss of use dependence as observed for the replacement of the whole stretch. These results establish evidence that amino acids that govern inactivation and the drug-binding site and other amino acids that are located distal from the putative drug-binding site contribute significantly to the function of the benzothiazepine receptor region. The data are consistent with a complex "pocket" conformation that is responsive to a specific class of L-type calcium channel inhibitors. The data allow for a concept that multiple sites within regions of the alpha(1) subunit contribute to auto-regulation of the L-type Ca(2+) channel.

PubMed Disclaimer

Publication types

LinkOut - more resources