Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jan 15;23(1):59-76.
doi: 10.1002/jcc.1157.

Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase

Affiliations
Comparative Study

Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase

Maricel Torrent et al. J Comput Chem. .

Abstract

An overview of the computational efforts made by our group during the last few years in the field of nonheme diiron proteins is presented. Through application of ab initio methodology to a reasonable set of molecular models, significant progress is made in understanding how the soluble Methane Monooxygenase system achieves the hydroxylation of methane and how the catalytic cycle of Ribonucleotide Reductase is initiated. In particular, the current studies reveal in more detail (1) the nature of key intermediates in the reaction cycles of these two metalloenzymes, (2) details of how the iron centers regulate the systems, and (3) important aspects of how the carboxylate ligands in the active sites may tailor the enzymatic needs of the metalloprotein. This knowledge also leads to novel connections between the two enzymes. The coordinative unsaturation and carboxylate shifts investigated herein are two properties that are likely to be of more general impact in nonheme proteins. The control of the redox chemistry of the enzyme by the binuclear metal center, also analyzed here, should find common ground among other bimetallic systems as well.

PubMed Disclaimer

Publication types

LinkOut - more resources