Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;75(3):219-26.
doi: 10.1006/mgme.2002.3298.

Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse

Affiliations

Evaluation of liver fatty acid oxidation in the leptin-deficient obese mouse

Amy E Brix et al. Mol Genet Metab. 2002 Mar.

Abstract

We hypothesized that liver fatty acid oxidation (FAO) is compromised in the leptin-deficient obese (Lep(ob)/Lep(ob)) mouse model, and that this would be further challenged when these mice were fed a high-fat diet. Obese mice had a 3.8-fold increased body fat content and a 9-fold increased liver fat content as compared to control mice when both groups were fed a low-fat diet. The expression of liver FAO enzymes, carnitine palmitoyltransferase-1a, long-chain acyl-CoA dehydrogenase, medium-chain acyl-CoA dehydrogenase, and short-chain acyl-CoA dehydrogenase, was not affected in obese mice as compared to controls on either a low-fat or a high-fat diet. The expression of very-long-chain acyl-CoA dehydrogenase was elevated in obese mice on the control diet, as compared to control mice. For all measures evaluated, increasing the level of fat in the diet had a smaller effect than leptin deficiency. In summary, despite obese mice having an excess of fat available for mitochondrial beta-oxidation in liver, overall energy balance appeared to dictate that the net liver FAO remained at control levels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources