Fallibility in estimating direct effects
- PMID: 11914314
- DOI: 10.1093/ije/31.1.163
Fallibility in estimating direct effects
Abstract
We use causal graphs and a partly hypothetical example from the Physicians' Health Study to explain why a common standard method for quantifying direct effects (i.e. stratifying on the intermediate variable) may be flawed. Estimating direct effects without bias requires that two assumptions hold, namely the absence of unmeasured confounding for (1) exposure and outcome, and (2) the intermediate variable and outcome. Recommendations include collecting and incorporating potential confounders for the causal effect of the mediator on the outcome, as well as the causal effect of the exposure on the outcome, and clearly stating the additional assumption that there is no unmeasured confounding for the causal effect of the mediator on the outcome.
Comment in
-
Commentary: estimating direct and indirect effects-fallible in theory, but in the real world?Int J Epidemiol. 2002 Feb;31(1):166-7. doi: 10.1093/ije/31.1.166. Int J Epidemiol. 2002. PMID: 11914315 No abstract available.
Similar articles
-
Commentary: estimating direct and indirect effects-fallible in theory, but in the real world?Int J Epidemiol. 2002 Feb;31(1):166-7. doi: 10.1093/ije/31.1.166. Int J Epidemiol. 2002. PMID: 11914315 No abstract available.
-
Bias Formulas for Estimating Direct and Indirect Effects When Unmeasured Confounding Is Present.Epidemiology. 2016 Jan;27(1):125-32. doi: 10.1097/EDE.0000000000000407. Epidemiology. 2016. PMID: 26426943
-
Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis.Stat Methods Med Res. 2019 Feb;28(2):515-531. doi: 10.1177/0962280217729844. Epub 2017 Sep 7. Stat Methods Med Res. 2019. PMID: 28882092
-
Bounding causal effects under uncontrolled confounding using counterfactuals.Epidemiology. 2005 Jul;16(4):548-55. doi: 10.1097/01.ede.0000166500.23446.53. Epidemiology. 2005. PMID: 15951674 Review.
-
A tutorial on the use of instrumental variables in pharmacoepidemiology.Pharmacoepidemiol Drug Saf. 2017 Apr;26(4):357-367. doi: 10.1002/pds.4158. Epub 2017 Feb 27. Pharmacoepidemiol Drug Saf. 2017. PMID: 28239929 Review.
Cited by
-
Causality, mediation and time: a dynamic viewpoint.J R Stat Soc Ser A Stat Soc. 2012 Oct;175(4):831-861. doi: 10.1111/j.1467-985X.2011.01030.x. J R Stat Soc Ser A Stat Soc. 2012. PMID: 23193356 Free PMC article.
-
Quantifying mediating effects of endogenous estrogen and insulin in the relation between obesity, alcohol consumption, and breast cancer.Cancer Epidemiol Biomarkers Prev. 2012 Jul;21(7):1203-12. doi: 10.1158/1055-9965.EPI-12-0310. Epub 2012 May 7. Cancer Epidemiol Biomarkers Prev. 2012. PMID: 22564867 Free PMC article.
-
Identifiability, exchangeability and confounding revisited.Epidemiol Perspect Innov. 2009 Sep 4;6:4. doi: 10.1186/1742-5573-6-4. Epidemiol Perspect Innov. 2009. PMID: 19732410 Free PMC article.
-
Effects of Objective and Perceived Social Isolation on Cardiovascular and Brain Health: A Scientific Statement From the American Heart Association.J Am Heart Assoc. 2022 Aug 16;11(16):e026493. doi: 10.1161/JAHA.122.026493. Epub 2022 Aug 4. J Am Heart Assoc. 2022. PMID: 35924775 Free PMC article.
-
Risk factors for late (28+ weeks' gestation) stillbirth in the United States, 2014-2015.PLoS One. 2023 Aug 30;18(8):e0289405. doi: 10.1371/journal.pone.0289405. eCollection 2023. PLoS One. 2023. PMID: 37647261 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical