Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May 31;277(22):20020-5.
doi: 10.1074/jbc.M200727200. Epub 2002 Mar 26.

The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression

Affiliations
Free article

The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression

Amy E Allen-Jennings et al. J Biol Chem. .
Free article

Abstract

Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element-binding protein family of transcription factors, is a transcriptional repressor, and the expression of its corresponding gene, ATF3, is induced by many stress signals. In this report, we demonstrate that transgenic mice expressing ATF3 in the liver had symptoms of liver dysfunction such as high levels of serum bilirubin, alkaline phosphatase, alanine transaminase, aspartate transaminase, and bile acids. In addition, these mice had physiological responses consistent with hypoglycemia including a low insulin:glucagon ratio in the serum and reduced adipose tissue mass. Electrophoretic mobility shift assays indicated that ATF3 bound to the ATF/cAMP-responsvie element site derived from the promoter of the gene encoding the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK). Furthermore, transient transfection assays indicated that ATF3 repressed the activity of the PEPCK promoter. Taken together, our results are consistent with the model that the expression of ATF3 in the liver results in defects in glucose homeostasis by repressing gluconeogenesis. Because ATF3 is a stress-inducible gene, these mice may provide a model to investigate the molecular mechanisms of some stress-associated liver diseases.

PubMed Disclaimer

Publication types

MeSH terms