Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;41(1):43-54.
doi: 10.1016/s0197-0186(01)00136-x.

Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid beta-peptides induced oxidative stress and reduces NF-kappaB activation

Affiliations

Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid beta-peptides induced oxidative stress and reduces NF-kappaB activation

M Bisaglia et al. Neurochem Int. 2002 Jul.

Abstract

The present findings show that an atypical non-steroidal anti-inflammatory drug, such as acetaminophen, retains the ability to recover amyloid beta-peptides driven neuronal apoptosis through the impairment of oxidative stress. Moreover, this compound reduces the increased NF-kappaB binding activity, which occurs in these degenerative conditions. Therapeutic interventions aimed at reducing the inflammatory response in Alzheimer's disease (AD) recently suggested the application of non-steroidal anti-inflammatory drugs. Although the anti-inflammatory properties of acetaminophen are controversial, it emerged that in an amyloid-driven astrocytoma cell degeneration model acetaminophen proved to be effective. On these bases, we analyzed the role of acetaminophen against the toxicity exerted by different Abeta-peptides on rat primary hippocampal neurons and on a rat pheochromocytoma cell line. We found a consistent protection from amyloid beta-fragments 1-40 and 1-42-induced impairment of mitochondrial redox activity on both cell cultures, associated with a marked reduction of apoptotic nuclear fragmentation. An antioxidant component of the protective activity emerged from the analysis of the reduction of phospholipid peroxidation, and also from a significant reduction of cytoplasmic accumulation of peroxides in the pheochromocytoma cell line. Moreover, activation of NF-kappaB by amyloid-derived peptides was greatly impaired by acetaminophen pre-treatment in hippocampal cells. This evidence points out antioxidant and anti-transcriptional properties of acetaminophen besides the known capability to interfere with inflammation within the central nervous system, and suggests that it can be exploited as a possible therapeutic approach against AD.

PubMed Disclaimer

Publication types

Grants and funding

LinkOut - more resources