Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;23(7):1579-85.
doi: 10.1016/s0142-9612(01)00283-6.

Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate--polylactide composites

Affiliations

Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate--polylactide composites

N C Bleach et al. Biomaterials. 2002 Apr.

Abstract

A bioabsorbable self-reinforced polylactide/biphasic calcium phosphate (BCP) composite is being developed for fracture fixation plates. One manufacturing route is to produce preimpregnated sheets by pulling polylactide (PLA) fibres through a suspension of BCP filler in a PLA solution and compression moulding the prepreg to the desired shape. To aid understanding of the process, interactions between the matrix and filler were investigated. Composite films containing 0-0.25 volume fraction filler, produced by solvent casting, were analysed using SEM, tensile testing and dynamic mechanical analysis (DMA). Homogeneous films could be made, although some particle agglomeration was seen at higher filler volume fractions. As the filler content increased, the failure strain decreased due to a reduction in the amount of ductile polymer present and the ultimate tensile strength (UTS) decreased because of agglomeration and void formation at higher filler content. The matrix glass transition temperature increased due to polymer chain adsorption and immobilization onto the BCP particles. Complex damping mechanisms, such as particle-particle agglomeration, may exist at the higher BCP volume fractions.

PubMed Disclaimer

Publication types

LinkOut - more resources