Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Mar;9(2):113-24.
doi: 10.1054/jocn.2001.1031.

Ischaemic brain oedema

Affiliations
Review

Ischaemic brain oedema

Cenk Ayata et al. J Clin Neurosci. 2002 Mar.

Abstract

Ischaemic brain oedema appears to involve two distinct processes, the relative contribution and time course of which depend on the duration and severity of ischaemia, and the presence of reperfusion. The first process involves an increase in tissue Na+ and water content accompanying increased pinocytosis and Na+, K+ ATPase activity across the endothelium. This is apparent during the early phase of infarction and before any structural damage is evident. This phenomenon is augmented by reperfusion. A second process results from a more indiscriminate and delayed BBB breakdown that is associated with infarction of both the parenchyma and the vasculature itself. Although, tissue Na+ level still seems to be the major osmotic force for oedema formation at this second stage, the extravasation of serum proteases is an additional potentially deleterious factor. The relative importance of protease action is not yet clear, however, degradation of the extracellular matrix conceivably leads to further BBB disruption and softening of the tissue, setting the stage for the most pronounced forms of brain swelling. A number of factors mediate or modulate ischaemic oedema formation, however, most current information comes from experimental models, and clinical data on this microcosmic level is lacking. Clinically significant brain oedema develops in a delayed fashion after large hemispheric strokes and is a cause of substantial mortality. Neurological signs appear to be at least as good as direct ICP measurement and neuroimaging in detecting and gauging the secondary damage produced by stroke oedema. The neuroimaging characteristics of the stroke, specifically the early involvement of greater than half of the MCA territory, are, however, highly predictive of the development of severe oedema over the subsequent hours and days. None of the available medical therapies provide substantial relief from the oedema and raised ICP, or at best, they are temporizing in most cases. Hemicraniectomy appears most promising as a method of avoiding death from brain compression, but the optimum timing and manner of patient selection are currently being investigated. All approaches to massive ischaemic brain swelling are clouded by the potential for survival with poor functional outcome. It is possible to manage blood pressure, serum osmolarity by way of selective fluid administration, and a number of other systemic factors that exaggerate brain oedema. Broad guidelines for treatment of stroke oedema can therefore be given at this time.

PubMed Disclaimer

MeSH terms

LinkOut - more resources