Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;129(7):1595-607.
doi: 10.1242/dev.129.7.1595.

A pea seed mutant affected in the differentiation of the embryonic epidermis is impaired in embryo growth and seed maturation

Affiliations

A pea seed mutant affected in the differentiation of the embryonic epidermis is impaired in embryo growth and seed maturation

Ljudmilla Borisjuk et al. Development. 2002 Apr.

Abstract

During legume seed development the epidermis of the embryos differentiates into a transfer cell layer which mediates nutrient uptake during the storage phase. This specific function of the epidermal cells is acquired at the onset of embryo maturation. We investigated this process in the pea seed mutant E2748. The epidermal cells of the mutant embryo, instead of turning into transfer cells, enlarge considerably and become vacuolated and tightly associated with adjacent seed tissues. Expression of a sucrose transporter gene that is upregulated in wild-type transfer cells decreases in the mutant and changes its spatial pattern. This indicates that the outermost cell layer of mutant cotyledons cannot acquire transfer cell morphology but loses epidermal cell identity and does not function as a sucrose uptake system. Seed coat growth as well as composition, concentration and dynamics of sugars within the endospermal vacuole are unchanged. The loss of epidermal identity has severe consequences for further embryo development and is followed by disruption of the symplast within the parenchyma, the breach of the developmental gradient, lower sucrose and starch levels and initiation of callus-like growth. It is concluded that the E2748 gene controls differentiation of the cotyledonary epidermis into transfer cells and thus is required for the regional specialisation with a function in embryo nutrition.

PubMed Disclaimer

Publication types

MeSH terms