Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar 15;74(6):1288-93.
doi: 10.1021/ac010840b.

Rational design of a polymer specific for microcystin-LR using a computational approach

Affiliations

Rational design of a polymer specific for microcystin-LR using a computational approach

Iva Chianella et al. Anal Chem. .

Abstract

A computational approach for the design of a molecularly imprinted polymer (MIP) specific for Cyanobacterial toxin microcystin-LR is presented. By using molecular modeling software, a virtual library of functional monomers was designed and screened against the target toxin, employed as a template. The monomers giving the highest binding energy were selected and used in a simulated annealing (molecular dynamics) process to investigate their interaction with the template. The stoichiometric ratio observed from the simulated annealing study was used in MIP preparation for microcystin-LR. The monomers were copolymerized with a cross-linker in the presence of the template. A control (blank) polymer was prepared under the same conditions but in the absence of template. A competitive assay with microcystin-horseradish peroxidase conjugate was optimized and used to evaluate the affinity and cross-reactivity of the polymer. The performance of the artificial receptor was compared to the performance of monoclonal and polyclonal antibodies raised against the toxin. The results indicate that imprinted polymer has affinity and sensitivity comparable to those of polyclonal antibodies (the detection limit for microcystin-LR using the MIP-based assay was found to be 0.1 microg L-1), while superior chemical and thermal stabilities were obtained. Moreover, cross-reactivity to other toxin analogues was very low for the imprinted polymer, in contrast to the results achieved for antibodies. It is anticipated that the polymer designed could be used in assays, sensors, and solid-phase extraction.

PubMed Disclaimer

Publication types

LinkOut - more resources