Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;8(2):224-9.
doi: 10.3748/wjg.v8.i2.224.

Effect of cis-9, trans-11-conjugated linoleic acid on cell cycle of gastric adenocarcinoma cell line (SGC-7901)

Affiliations

Effect of cis-9, trans-11-conjugated linoleic acid on cell cycle of gastric adenocarcinoma cell line (SGC-7901)

Jia-Ren Liu et al. World J Gastroenterol. 2002 Apr.

Abstract

Aim: To determine the effect of cis -9, trans -11-conjugated linoleic acid (c9, t11-CLA) on the cell cycle of gastric cancer cells (SGC-7901) and its possible mechanism in inhibition cancer growth.

Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA, cyclin A, B(1), D(1), p16(ink4a) and p21(cip/waf1) of SGC-7901 cells which were treated with various c9, t11-CLA concentrations (25, 50, 100 and 200 micromol.L(-1))of c 9, t 11-CLA for 24 and 48h, with a negative control (0.1% ethane).

Results: The cell growth and DNA synthesis of SGC-7901 cells were inhibited by c9, t11-CLA.SGC-7901 cells. Eight day after treatment with various concentrations of c9, t11-CLA mentioned above, the inhibition rates were 5.92%, 20.15%, 75.61% and 82.44%, respectively and inhibitory effect of c9, t11-CLA on DNA synthesis (except for 25 micromol.L, 24h) showed significantly less (3)H-TdR incorporation than that in the negative controls (P<0.05 and P<0.01). Immunocytochemical staining demonstrated that SGC-7901 cells preincubated in media supplemented with different c9, t11-CLA concentrations at various times significantly decreased the expressions of PCNA (the expression rates were 7.2-3.0%, 24h and 9.1-0.9% at 48h, respectively), Cyclin A (11.0-2.3%, 24h and 8.5-0.5%,48h), B(1) (4.8-1.8% at 24h and 5.5-0.6% at 48h)and D(1) (3.6-1.4% at 24h and 3.7%-0 at 48h) as compared with those in the negative controls(the expressions of PCNA, Cyclin A, B(1) and D(1) were 6.5% at 24h and 9.0% at 48h, 4.2% at 24h and 5.1% at 48h, 9.5% at 24h and 6.0% at 48h,respectively)(P<0.01), whereas the expressions of P16(ink4a) and P21(cip/waf1), cyclin-dependent kinases inhibitors(CDKI), were increased.

Conclusion: The cell growth and proliferation of SGC-7901 cell is inhibited by c9, t11-CLA via blocking the cell cycle, with reduced expressions of cyclin A,B(1) and D(1) and enhanced expressions of CDKI(P16(ink4a) and p21(cip/waf1)).

PubMed Disclaimer

Figures

Figure 1
Figure 1
Growth curve of SGC-7901 cells cultured in various concentration of c9,t11-CLA
Figure 2
Figure 2
Expression of PCNA on SGC-7901 cells treated with c9,t11-CLA
Figure 3
Figure 3
A: The expression of PCNA on SGC-7901 cells of the negative controls (immunocytochemistry staining SP method, original magnification × 400); B: The expression of cyclin A on SGC-7901 cells of the negative controls (immunocytochemistry staining SP method, original magnification × 400); C: The expression of cyclin B1 on SGC-7901 cells of the negative controls (immunocytochemistry staining SP method, original magnification × 400); D: The expression of cyclin D1 on SGC-7901 cells of the negative controls (immunocytochemistry staining SP method, original magnification × 400); E: The expression of P16inf4aon SGC-7901 cells of c9,t11-CLA group (100 μmol•L⁻¹) (immunocytochemistry staining SP method, original magnification × 400); F: The expression of P21cip/waf1 on SGC-7901 cells of c9,t11-CLA group (100 μmol•L⁻¹) (immunocytochemistry staining SP method, original magnification × 400)
Figure 4
Figure 4
The relationship between CDKI (P16 and P21) and cyclins in G1/S transition

Similar articles

Cited by

References

    1. Gao HJ, Yu LZ, Bai JF, Peng YS, Sun G, Zhao HL, Miu K, L XZ, Zhang XY, Zhao ZQ. Multiple genetic alterations and behavior of cellular biology in gastric cancer and other gastric mucosal lesions: H. pylori infection, histological types and staging. World J Gastroenterol. 2000;6:848–854. - PMC - PubMed
    1. Deng DJ, E Z. Overview on recent studies of gastric carcinogenesis: human exposure of N nitrosamides. Shijie Huaren Xiaohua Zazhi. 2000;8:250–252.
    1. Deng DJ. progress of gastric cancer etiology: N-nitrosamides 1999s. World J Gastroenterol. 2000;6:613–618. - PMC - PubMed
    1. Li DG, Wang ZR, Lu HM. Pharmacology of tetrandrine and its therapeutic use in digestive diseases. World J Gastroenterol. 2001;7:627–629. - PMC - PubMed
    1. Niu WX, Qin XY, Liu H, Wang CP. Clinicopathological analysis of patients with gastric cancer in 1200 cases. World J Gastroenterol. 2001;7:281–284. - PMC - PubMed

Publication types

MeSH terms