Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;87(4):1677-85.
doi: 10.1152/jn.00509.2001.

Role of eye, head, and shoulder geometry in the planning of accurate arm movements

Affiliations
Free article

Role of eye, head, and shoulder geometry in the planning of accurate arm movements

D Y P Henriques et al. J Neurophysiol. 2002 Apr.
Free article

Abstract

Eye-hand coordination requires the brain to integrate visual information with the continuous changes in eye, head, and arm positions. This is a geometrically complex process because the eyes, head, and shoulder have different centers of rotation. As a result, head rotation causes the eye to translate with respect to the shoulder. The present study examines the consequences of this geometry for planning accurate arm movements in a pointing task with the head at different orientations. When asked to point at an object, subjects oriented their arm to position the fingertip on the line running from the target to the viewing eye. But this eye-target line shifts when the eyes translate with each new head orientation, thereby requiring a new arm pointing direction. We confirmed that subjects do realign their fingertip with the eye-target line during closed-loop pointing across various horizontal head orientations when gaze is on target. More importantly, subjects also showed this head-position-dependent pattern of pointing responses for the same paradigm performed in complete darkness. However, when gaze was not on target, compensation for these translations in the rotational centers partially broke down. As a result, subjects tended to overshoot the target direction relative to current gaze; perhaps explaining previously reported errors in aiming the arm to retinally peripheral targets. These results suggest that knowledge of head position signals and the resulting relative displacements in the centers of rotation of the eye and shoulder are incorporated using open-loop mechanisms for eye-hand coordination, but these translations are best calibrated for foveated, gaze-on-target movements.

PubMed Disclaimer

Publication types

LinkOut - more resources