Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 May 1;47(2):228-35.
doi: 10.1002/prot.10082.

Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles

Affiliations
Comparative Study

Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles

Gianluca Pollastri et al. Proteins. .

Abstract

Secondary structure predictions are increasingly becoming the workhorse for several methods aiming at predicting protein structure and function. Here we use ensembles of bidirectional recurrent neural network architectures, PSI-BLAST-derived profiles, and a large nonredundant training set to derive two new predictors: (a) the second version of the SSpro program for secondary structure classification into three categories and (b) the first version of the SSpro8 program for secondary structure classification into the eight classes produced by the DSSP program. We describe the results of three different test sets on which SSpro achieved a sustained performance of about 78% correct prediction. We report confusion matrices, compare PSI-BLAST to BLAST-derived profiles, and assess the corresponding performance improvements. SSpro and SSpro8 are implemented as web servers, available together with other structural feature predictors at: http://promoter.ics.uci.edu/BRNN-PRED/.

PubMed Disclaimer

Publication types

LinkOut - more resources