Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr 2;3(4):274-93.
doi: 10.1002/1439-7633(20020402)3:4<274::AID-CBIC274>3.0.CO;2-S.

Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases

Affiliations
Review

Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases

Albert Jeltsch. Chembiochem. .

Erratum in

  • Chembiochem 2002 May 3;3(5):382

Abstract

DNA methyltransferases catalyze the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine bases in DNA. These enzymes challenge the Watson/Crick dogma in two instances: 1) They attach inheritable information to the DNA that is not encoded in the nucleotide sequence. This so-called epigenetic information has many important biological functions. In prokaryotes, DNA methylation is used to coordinate DNA replication and the cell cycle, to direct postreplicative mismatch repair, and to distinguish self and nonself DNA. In eukaryotes, DNA methylation contributes to the control of gene expression, the protection of the genome against selfish DNA, maintenance of genome integrity, parental imprinting, X-chromosome inactivation in mammals, and regulation of development. 2) The enzymatic mechanism of DNA methyltransferases is unusual, because these enzymes flip their target base out of the DNA helix and, thereby, locally disrupt the B-DNA helix. This review describes the biological functions of DNA methylation in bacteria, fungi, plants, and mammals. In addition, the structures and mechanisms of the DNA methyltransferases, which enable them to specifically recognize their DNA targets and to induce such large conformational changes of the DNA, are discussed.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources