Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr;33(4):1146-51.
doi: 10.1161/01.str.0000014208.05597.33.

Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use

Affiliations
Review

Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use

F Calamante et al. Stroke. 2002 Apr.

Abstract

Background: MR techniques have been very powerful in providing indicators of tissue perfusion, particularly in studies of cerebral ischemia. There is considerable interest in performing absolute perfusion measurements, with the aim of improving the characterization of tissue "at risk" of stroke. However, some important caveats relating to absolute measurements need to be taken into account. The purpose of this article is to discuss some of the issues involved and the potential implications for absolute cerebral blood flow measurements in clinical use.

Summary of comment: In bolus tracking MRI, deconvolution of the concentration-time course can in theory provide accurate quantification. However, there are several important assumptions in the tracer kinetic model used, some of which may be invalid in cerebral ischemia. These can introduce significant errors in perfusion quantification.

Conclusions: Although we believe that bolus tracking MRI is a powerful technique for the evaluation of perfusion in cerebral ischemia, interpretation of perfusion maps requires caution; this is particularly true when absolute quantification is attempted. Work is currently under way in a number of centers to address these problems, and with appropriate modeling they may be overcome in the future. In the interim, we believe that it is necessary for users of bolus tracking perfusion data to be aware of the current technical limitations if they are to avoid misinterpretation or overinterpretation of their findings.

PubMed Disclaimer

Publication types