Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;7(4-5):500-13.
doi: 10.1007/s00775-001-0325-z. Epub 2002 Feb 14.

The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2

Affiliations

The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2

Felix Mahlert et al. J Biol Inorg Chem. 2002 Apr.

Abstract

Methyl-coenzyme M reductase (MCR) is a nickel enzyme catalyzing the formation of methane from methyl-coenzyme M and coenzyme B in all methanogenic archaea. The active purified enzyme exhibits the axial EPR signal MCR-red1 and in the presence of coenzyme M and coenzyme B the rhombic signal MCR-red2, both derived from Ni(I). Two other EPR-detectable states of the enzyme have been observed in vivo and in vitro designated MCR-ox1 and MCR-ox2 which have quite different nickel EPR signals and which are inactive. Until now the MCR-ox1 and MCR-ox2 states could only be induced in vivo. We report here that in vitro the MCR-red2 state is converted into the MCR-ox1 state by the addition of polysulfide and into a light-sensitive MCR-ox2 state by the addition of sulfite. In the presence of O(2) the MCR-red2 state was converted into a novel third state designated MCR-ox3 and exhibiting two EPR signals similar but not identical to MCR-ox1 and MCR-ox2. The formation of the MCR-ox states was dependent on the presence of coenzyme B. Investigations with the coenzyme B analogues S-methyl-coenzyme B and desulfa-methyl-coenzyme B indicate that for the induction of the MCR-ox states the thiol group of coenzyme B is probably not of importance. The results were obtained with purified active methyl-coenzyme M reductase isoenzyme I from Methanothermobacter marburgensis. They are discussed with respect to the nickel oxidation states in MCR-ox1, MCR-ox2 and MCR-ox3 and to a possible presence of a second redox active group in the active site. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00775-001-0325-z.

PubMed Disclaimer

Publication types

LinkOut - more resources