Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 12;277(28):25748-55.
doi: 10.1074/jbc.M111871200. Epub 2002 Apr 10.

Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family

Affiliations
Free article

Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family

Lin Gao et al. J Biol Chem. .
Free article

Abstract

We have cloned and characterized a human cDNA that belongs to the histone deacetylase family, which we designate as HDAC11. The predicted HDAC11 amino acid sequence reveals an open reading frame of 347 residues with a corresponding molecular mass of 39 kDa. Sequence analyses of the putative HDAC11 protein indicate that it contains conserved residues in the catalytic core regions shared by both class I and II mammalian HDAC enzymes. Putative orthologues of HDAC11 exist in primate, mouse, Drosophila, and plant. Epitope-tagged HDAC11 protein expressed in mammalian cells displays histone deacetylase activity in vitro. Furthermore, HDAC11's enzymatic activity is inhibited by trapoxin, a known histone deacetylase inhibitor. Multiple tissue Northern blot and real-time PCR experiments show that the high expression level of HDAC11 transcripts is limited to kidney, heart, brain, skeletal muscle, and testis. Epitope-tagged HDAC11 protein localizes predominantly to the cell nucleus. Co-immunoprecipitation experiments indicate that HDAC11 may be present in protein complexes that also contain HDAC6. These results indicate that HDAC11 is a novel and unique member of the histone deacetylase family and it may have distinct physiological roles from those of the known HDACs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources