Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 3;2(12):877-83.
doi: 10.1002/1439-7633(20011203)2:12<877::AID-CBIC877>3.0.CO;2-V.

A fast and efficient metal-mediated oxidation of isoniazid and identification of isoniazid-NAD(H) adducts

Affiliations

A fast and efficient metal-mediated oxidation of isoniazid and identification of isoniazid-NAD(H) adducts

M Nguyen et al. Chembiochem. .

Abstract

It is currently believed that isoniazid (INH) is oxidised inside Mycobacterium tuberculosis to generate, by covalent attachment to the nicotinamide ring of NAD(H) (beta-nicotinamide adenine dinucleotide), a strong inhibitor of InhA, an enzyme essential for mycolic acid biosynthesis. This work was carried out to characterise the InhA inhibitors (named INH-NAD(H) adducts) which are generated, in the presence of the nicotinamide coenzyme NAD+, by oxidation of INH with manganese(III) pyrophosphate, a nonenzymatic and efficient oxidant used to mimic INH activation by the catalase-peroxidase KatG inside M. tuberculosis. The oxidation process is almost complete in less than 15 minutes (in comparison to the slow activation obtained in the KatG-dependent process (2.5 hours) or in the nonenzymatic O2/Mn(II)-dependent activation (5 hours)). The alkylation of NAD+ by the postulated isonicotinoyl radical generates, in solution, a family of INH-NAD(H) adducts. Analyses with liquid chromatography/electrospray ionisation mass spectrometry (LC/ESI-MS) and experiments performed with 18O- and 2H-labelled substrates allowed us to propose two open and four hemiamidal cyclised dihydropyridine structures as the main forms present in solution; these result from the combination of the isonicotinoyl radical and the nicotinamide part of NAD+. A small amount of a secondary oxidation product was also detected. Structural data on the forms present in solution should help in the design of inhibitors of enzymes involved in the biosynthesis of mycolic acids to act as potential antituberculosis drugs.

PubMed Disclaimer

MeSH terms

LinkOut - more resources