BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells
- PMID: 11949826
- DOI: 10.1023/a:1014448721327
BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells
Abstract
Radiotherapy is the standard treatment for glioblastoma. Here, we assessed the radiosensitivity of 12 human malignant glioma cell lines in vitro and correlated these data with irradiation-induced cell cycle changes, chemosensitivity profiles and BCL-2 family protein expression. Irradiation at 3 Gy failed to cause major cell cycle perturbations. Radioresistance was associated with collateral sensitivity to the topoisomerase II inhibitors, teniposide and doxorubicin. High levels of BCL-XL and low levels of BAX were independently linked to radioresistance. Ectopic expression of a BAX transgene induced radiosensitization in the LN-18 cell line. Thus, BCL-2 family protein expression modulates radiosensitivity in human glioma cells and targeted alterations in BCL-2 family protein expression are a promising strategy to improve the therapeutic efficacy of radiotherapy for gliomas.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials