Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Mar;2(2):213-27.
doi: 10.2174/1566524024605743.

Fanconi-Bickel syndrome--a congenital defect of facilitative glucose transport

Affiliations
Review

Fanconi-Bickel syndrome--a congenital defect of facilitative glucose transport

R Santer et al. Curr Mol Med. 2002 Mar.

Abstract

Fanconi-Bickel syndrome (FBS, OMIM 227810) is a rare type of glycogen storage disease (GSD). It is caused by homozygous or compound heterozygous mutations within GLUT2, the gene encoding the most important facilitative glucose transporter in hepatocytes, pancreatic beta-cells, enterocytes, and renal tubular cells. To date, 112 patients have been reported in the literature. Most patients have the typical combination of clinical symptoms: hepatomegaly secondary to glycogen accumulation, glucose and galactose intolerance, fasting hypoglycemia, a characteristic tubular nephropathy, and severely stunted growth. In 63 patients, mutation analysis has revealed a total of 34 different GLUT2 mutations with none of them being particularly frequent. No specific therapy is available for FBS patients. Symptomatic treatment is directed towards a stabilization of glucose homeostasis and compensation for renal losses of various solutes. In addition to the clinical and molecular genetic aspects of FBS, this review discusses the pathophysiology of the disease and compares it to recent findings in GLUT2 deficient transgenic animals. An overview is also provided on recently discovered members of the rapidly growing family of facilitative glucose transporters, which are novel candidates for congenital disorders of carbohydrate metabolism.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources