Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr 1;22(4):549-53.
doi: 10.1161/01.atv.0000012303.37971.da.

RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function

Affiliations
Review

RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function

Michael Schoppet et al. Arterioscler Thromb Vasc Biol. .

Abstract

In 1997, investigators isolated a secreted glycoprotein that blocked osteoclast differentiation from precursor cells, prevented osteoporosis (decreased bone mass) when administered to ovariectomized rats, and resulted in osteopetrosis (increased bone mass) when overexpressed in transgenic mice. Since then, the isolation and characterization of the protein named osteoprotegerin (OPG) has stimulated much work in the fields of endocrinology, rheumatology, and immunology. OPG functions as a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL, or OPG ligand) and shares homologies with other members of the tumor necrosis factor receptor superfamily. OPG acts by competing with the receptor activator of nuclear factor-kappaB, which is expressed on osteoclasts and dendritic cells for specifically binding to RANKL. RANKL is crucially involved in osteoclast functions and bone remodeling as well as immune cell cross-talks, dendritic cell survival, and lymph node organogenesis. More recently, emerging evidence from in vitro studies and mouse genetics attributed OPG an important role in vascular biology. In fact, OPG could represent the long sought-after molecular link between arterial calcification and bone resorption, which underlies the clinical coincidence of vascular disease and osteoporosis, which are most prevalent in postmenopausal women and elderly people.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources