Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002:215:231-58.
doi: 10.1016/s0074-7696(02)15011-x.

Cell volume homeostasis: ionic and nonionic mechanisms. The sodium pump in the emergence of animal cells

Affiliations
Review

Cell volume homeostasis: ionic and nonionic mechanisms. The sodium pump in the emergence of animal cells

Wilfred D Stein. Int Rev Cytol. 2002.

Abstract

Plant cells and bacterial cells are surrounded by a massive polysaccharide wall, which constrains their high internal osmotic pressure (tens of atmospheres). Animal cells, in contrast, are in osmotic equilibrium with their environment, have no restraining surround, and can take on a variety of shapes and can change these from moment to moment. This osmotic balance is achieved, in the first place, by the action of the energy-consuming sodium pump, one of the P-type ATPase transport protein family, members of which are found also in bacteria. The pump's action brings about a transmembranal electrochemical gradient of sodium ions, harnessed in a range of transport systems which couple the dissipation of this gradient to establishing a gradient of the coupled substrate. These transport systems include many which are responsible for short-term regulation of the cell's volume in response to acute changes of their osmotic balance. Thus, the primary role of the sodium pump as a regulator of cell volume has been built upon to provide the basis for an enormous variety of physiological functions.

PubMed Disclaimer

MeSH terms

LinkOut - more resources