Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May;282(5):H1571-83.
doi: 10.1152/ajpheart.01035.2001.

Ca(2+) oscillations, gradients, and homeostasis in vascular smooth muscle

Affiliations
Free article
Review

Ca(2+) oscillations, gradients, and homeostasis in vascular smooth muscle

Cheng-Han Lee et al. Am J Physiol Heart Circ Physiol. 2002 May.
Free article

Abstract

Vascular smooth muscle shows both plasticity and heterogeneity with respect to Ca(2+) signaling. Physiological perturbations in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) may take the form of a uniform maintained rise, a transient uniform [Ca(2+)](i) elevation, a transient localized rise in [Ca(2+)](i) (also known as spark and puff), a transient propagated wave of localized [Ca(2+)](i) elevation (Ca(2+) wave), recurring asynchronous Ca(2+) waves, or recurring synchronized Ca(2+) waves dependent on the type of blood vessel and the nature of stimulation. In this overview, evidence is presented which demonstrates that interactions of ion transporters located in the membranes of the cell, sarcoplasmic reticulum, and mitochondria form the basis of this plasticity of Ca(2+) signaling. We focus in particular on how the junctional complexes of plasmalemma and superficial sarcoplasmic reticulum, through the generation of local cytoplasmic Ca(2+) gradients, maintain [Ca(2+)](i) oscillations, couple these to either contraction or relaxation, and promote Ca(2+) cycling during homeostasis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources