Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;282(5):R1468-76.
doi: 10.1152/ajpregu.00307.2001.

Frequency modulation of mesenteric and renal vascular resistance

Affiliations
Free article

Frequency modulation of mesenteric and renal vascular resistance

Olaf Grisk et al. Am J Physiol Regul Integr Comp Physiol. 2002 May.
Free article

Abstract

The hypothesis was tested that low-frequency vasomotions in individual vascular beds are integrated by the cardiovascular system, such that new fluctuations at additional frequencies occur in arterial blood pressure. In anesthetized rats (n = 8), the sympathetic splanchnic and renal nerves were simultaneously stimulated at combinations of frequencies ranging from 0.075 to 0.8 Hz. Blood pressure was recorded together with mesenteric and renal blood flow velocities. Dual nerve stimulation at low frequencies (<0.6 Hz) caused corresponding oscillations in vascular resistance and blood pressure, whereas higher stimulation frequencies increased the mean levels. Blood pressure oscillations were only detected at the individual stimulation frequencies and their harmonics. The strongest periodic responses in vascular resistance were found at 0.40 +/- 0.02 Hz in the mesenteric and at 0.32 +/- 0.03 Hz (P < 0.05) in the renal vascular bed. Thus frequency modulation of low-frequency vasomotions in individual vascular beds does not cause significant blood pressure oscillations at additional frequencies. Furthermore, our data suggest that sympathetic modulation of mesenteric vascular resistance can initiate blood pressure oscillations at slightly higher frequencies than sympathetic modulation of renal vascular resistance.

PubMed Disclaimer

LinkOut - more resources