Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 May;13(5):1350-7.
doi: 10.1097/01.asn.0000014692.19351.52.

Refining predictive models in critically ill patients with acute renal failure

Affiliations
Comparative Study

Refining predictive models in critically ill patients with acute renal failure

Ravindra L Mehta et al. J Am Soc Nephrol. 2002 May.

Abstract

Mortality rates in acute renal failure remain extremely high, and risk-adjustment tools are needed for quality improvement initiatives and design (stratification) and analysis of clinical trials. A total of 605 patients with acute renal failure in the intensive care unit during 1989-1995 were evaluated, and demographic, historical, laboratory, and physiologic variables were linked with in-hospital death rates using multivariable logistic regression. Three hundred and fourteen (51.9%) patients died in-hospital. The following variables were significantly associated with in-hospital death: age (odds ratio [OR], 1.02 per yr), male gender (OR, 2.36), respiratory (OR, 2.62), liver (OR, 3.06), and hematologic failure (OR, 3.40), creatinine (OR, 0.71 per mg/dl), blood urea nitrogen (OR, 1.02 per mg/dl), log urine output (OR, 0.64 per log ml/d), and heart rate (OR, 1.01 per beat/min). The area under the receiver operating characteristic curve was 0.83, indicating good model discrimination. The model was superior in all performance metrics to six generic and four acute renal failure-specific predictive models. A disease-specific severity of illness equation was developed using routinely available and specific clinical variables. Cross-validation of the model and additional bedside experience will be needed before it can be effectively applied across centers, particularly in the context of clinical trials.

PubMed Disclaimer

Publication types

LinkOut - more resources