Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;301(2):586-93.
doi: 10.1124/jpet.301.2.586.

Intestinal metabolism promotes regional differences in apical uptake of indinavir: coupled effect of P-glycoprotein and cytochrome P450 3A on indinavir membrane permeability in rat

Affiliations

Intestinal metabolism promotes regional differences in apical uptake of indinavir: coupled effect of P-glycoprotein and cytochrome P450 3A on indinavir membrane permeability in rat

Lilian Y Li et al. J Pharmacol Exp Ther. 2002 May.

Abstract

The purpose of this study was to investigate transport and metabolism contributions to low indinavir permeability in rat ileum and enhanced drug permeability in the jejunum. Permeability models utilized included single pass in situ rat intestinal perfusion and rat intestinal tissue mounted in Ussing chambers. Intestinal metabolism was measured by fractional appearance of metabolite (F(met)), determined as the percentage of the predominant metabolite M6 over luminal loss of indinavir in the perfusion model. Among the results, indinavir exhibited bidirectional transport across rat ileum. Verapamil and cyclosporin A inhibited net flux by 37 and 38%, respectively. Intestinal metabolism of indinavir was most significant in upper jejunum (F(met) = 65.78 +/- 19.02%), decreasing in midjejunum (F(met) = 31.58 +/- 5.63%). M6 was not detectable in ileum or colon. Western blot analysis of rat intestinal mucosal tissue samples confirmed that the axial expression of CYP3A was consistent with the regional pattern of formation of M6. Intestinal metabolism was saturable and could be inhibited by the CYP3A inhibitor, ketoconazole. A low luminal concentration of indinavir (1 microM) was associated with high F(met) (87.90 +/- 14.30%), whereas a high luminal concentration of indinavir (50 microM) was associated with low F(met) (35.84 +/- 11.59%). In the presence of ketoconazole, both F(met) and permeability of indinavir were reduced in the jejunum. These results suggest that 1) intracellular metabolism of indinavir enhances apical uptake of indinavir in the rat jejunum as a function of the increased concentration gradient generated across the epithelial cell membrane and 2) the efflux transporter P-glycoprotein limits apical uptake of indinavir in the ileum, resulting in low apparent permeability.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources