Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;23(10):2167-77.
doi: 10.1016/s0142-9612(01)00349-0.

Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes

Affiliations

Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes

A Omolola Eniola et al. Biomaterials. 2002 May.

Abstract

The site-specific expression of selectins (E- and P-selectin) on endothelial cells of blood vessels during inflammation provides an opportunity for the targeted delivery of anti-inflammatory drugs to inflammatory sites. Previous work in our laboratory has shown that artificial capsules with the adhesive properties of leukocytes can be made by attaching leukocyte adhesive ligands to polystyrene microspheres. In this work, we have adapted this technology to create a targeted delivery system using biodegradable, poly lactic-co-glycolic-acid (PLGA) microspheres. Biotinylated-Sialyl Lewis(x) (sLe(x)), a carbohydrate that serves as a ligand to selectins, was attached to the surface of avidin-linked PLGA microspheres. These carbohydrate-coated microspheres mimic the adhesive behavior of leukocytes on selectins in flow chambers, displaying slow rolling under flow. The rolling velocities displayed by sLe(x)-coated microspheres were similar to those displayed by leukocytes rolling on P- or E-selectin coated surfaces, and these rolling velocities, which relate to the residence time of the capsules, can be tuned by changing the density of carbohydrate residues on microsphere surfaces. We have also demonstrated that these microspheres will release model drugs on a time scale of several days. Therefore, we have made a targeted drug delivery vehicle that mimics the adhesive properties of leukocytes and is biodegradable.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources