Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Dec 31;9(3):155-73.
doi: 10.1007/BF01751311.

Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria

Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria

M Lopes-Cardozo et al. Mol Cell Biochem. .

Abstract

The synthesis of ketone bodies by intact isolated rat-liver mitochondria has been studied at varying rates of acetyl-CoA production and of acetyl-CoA utilization in the Krebs cycle. Factors which enhanced the rate of acetyl-CoA production caused an increase in the fraction of acetyl-CoA which was incorporated into ketone bodies. On the other hand, it was found that factors which stimulated the formation of citrate lowered the relative rate of ketogenesis. It is concluded that acetyl-CoA is preferentially used for citrate synthesis, if the level of oxaloacetate in the mitochondrial matrix space is adequate. The intramitochondrial level of oxaloacetate, which is determined by the malate concentration and the ratio of NADH over NAD+, is the main factor controlling the rate of citrate synthesis. The ATP/ADP ratio per se does not affect the activity of citrate synthase in this in vitro system. Ketogenesis can be described as an overflow of acetyl-groups: Ketone-body formation is stimulated only when the rate of acetyl-CoA production increases beyond the capacity for citrate synthesis. The interaction between fatty acid oxidation and pyruvate metabolism and the effects of long-chain acyl-CoA on mitochondrial metabolism are discussed. Ketone bodies which were generated during the oxidation of [1-14C] fatty acids were preferentially labelled in their carboxyl group. This carboxyl group had the same specific activity as the acetyl-CoA pool, whereas the specific activity of the acetone moiety of acetoacetate was much lower, especially at low rates of ketone-body formation. The activities of acetoacetyl-CoA deacylase and the hydroxymethylglutaryl-CoA (HMG-CoA) pathway were compared in soluble and mitochondrial fractions of rat- and cow-liver in different ketotic states. In rat-liver mitochondria, both pathways of acetoacetate synthesis were stimulated upon starvation or in alloxan diabetes. In cow liver, only the HMG-CoA pathway was increased during ketosis in the mitochondrial as well as in the soluble fraction.

PubMed Disclaimer

References

    1. J Biol Chem. 1946 Jul;164:291-306 - PubMed
    1. Mol Cell Biochem. 1973 Dec 15;2(2):179-88 - PubMed
    1. J Biol Chem. 1970 Sep 10;245(17):4382-90 - PubMed
    1. FEBS Lett. 1973 Jan 15;29(2):193-6 - PubMed
    1. Biochim Biophys Acta. 1972;283(1):1-15 - PubMed