Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr 1;109(4):1352-7.
doi: 10.1097/00006534-200204010-00022.

In vivo efficacy of antimicrobe-impregnated saline-filled silicone implants

Affiliations

In vivo efficacy of antimicrobe-impregnated saline-filled silicone implants

Rabih O Darouiche et al. Plast Reconstr Surg. .

Abstract

Bacterial colonization of mammary implants is a prelude to clinical infection and has been implicated in the etiology of capsular contracture. Antimicrobial impregnation of a variety of medical devices with the combination of minocycline and rifampin has recently emerged as a potentially effective method for preventing device colonization and device-related infection. The objective of this animal study was to examine in vivo the antimicrobial efficacy of minocycline/rifampin-impregnated, saline-filled silicone implants. A rabbit model of Staphylococcus aureus colonization and infection of subcutaneously placed implants was used. A total of 48 saline-filled silicone implants (24 antimicrobe-impregnated and 24 control unimpregnated implants) were suspended in a 106 colony-forming units/ml bacterial suspension of S. aureus for 30 minutes at room temperature, allowed to dry for 60 minutes, and then implanted subcutaneously in the back of 12 rabbits (two antimicrobe-impregnated and two control implants were placed in each rabbit). Rabbits were monitored daily, then killed either at 2 weeks (10 rabbits) or at 4 weeks (two rabbits) and cultured. The antimicrobe-impregnated implants were 12 times less likely to be colonized than control unimpregnated implants (two of 24 versus 23 of 24; p < 0.001), and they were a significantly less likely cause of implant-related infection (0 of 24 versus 22 of 24; p < 0.001) and implant-related abscess (0 of 24 versus 21 of 24; p < 0.001) than control implants. The minocycline/rifampin-impregnated implants routinely demonstrated zones of inhibition against S. aureus at the time of explantation. These results indicate that minocycline/rifampin-impregnated implants can significantly decrease the rate of bacterial colonization, implant-related infection, and implant-related abscess. Antimicrobe-impregnated implants also have the potential of reducing the likelihood of capsular contracture.

PubMed Disclaimer

Publication types