Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;114(4):627-636.
doi: 10.1034/j.1399-3054.2002.1140417.x.

Reduced gravitropism in inflorescence stems and hypocotyls, but not roots, of Arabidopsis mutants with large plastids

Affiliations

Reduced gravitropism in inflorescence stems and hypocotyls, but not roots, of Arabidopsis mutants with large plastids

Kazuyoshi Yamamoto et al. Physiol Plant. 2002 Apr.

Abstract

The sites of gravity perception are columella cells in roots and endodermal cells in hypocotyls and inflorescence stems. Since plastids are likely to play a role in graviperception, we investigated gravitropism in plastid mutants of Arabidopsis. Previous studies have shown that the arc6 and arc12 (accumulation and replication of chloroplasts) mutants have an average of two large plastids per leaf mesophyll cell. In this study, we found that these arc mutants have altered plastid morphology throughout the entire plant body, including the cells involved in gravity perception. There were no major differences in total starch content per cell in endodermal and columella cells of the wild-type (WT) compared to arc6 and arc12 as assayed by iodine staining. Thus, the total mass of plastids per cell in arc6 and arc12 is similar to their respective WT strains. Results from time course of curvature studies demonstrated that the plastid mutation affected gravitropism only of inflorescence stems and hypocotyls, but not roots. Thus, roots appear to have different mechanisms of gravitropism compared to stems and hypocotyls. Time course of curvature studies with light-grown seedlings were performed in the presence of latrunculin B (Lat-B), an actin-depolymerizing drug. Lat-B promoted gravitropic curvature in hypocotyls of both the WT and arc6 but had little or no effect on gravitropism in roots of both strains. These results suggest that F-actin is not required for hypocotyl gravitropism.

PubMed Disclaimer

LinkOut - more resources