Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr;42(4):243-50.
doi: 10.1016/s0168-0102(02)00009-3.

Complementary distribution of vesicular glutamate transporters in the central nervous system

Affiliations
Review

Complementary distribution of vesicular glutamate transporters in the central nervous system

Takeshi Kaneko et al. Neurosci Res. 2002 Apr.

Abstract

Two vesicular glutamate transporters (VGluTs) have been identified at the molecular level very recently and revealed to possess similar pharmacological characteristics for glutamate uptake. Vesicular glutamate transporter 1 (VGluT1), which was originally named brain-specific Na+-dependent inorganic phosphate cotransporter (BNPI), is mainly expressed in telencephalic regions, whereas vesicular glutamate transporter 2 (VGluT2), formerly referred to as differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI), is produced principally in diencephalic and lower brainstem regions. Since no other proteins show as high molecular similarity to VGluT1 or VGluT2 as the two transporters exhibit, it is likely that the mammalian central nervous system use only two gene products for vesicular glutamate uptake. Immunoelectron-microscopic analysis has revealed that the two VGluTs are located on synaptic vesicles in axon terminals making an asymmetric type of synapses, supporting that they serve as vesicular transporters in excitatory terminals. Furthermore, mRNA and immunoreactivity for VGluTs are distributed largely in a complementary fashion to distinct populations of excitatory neurons; for example, in the cerebral cortex, thalamocortical axon terminals use VGluT2, whereas excitatory axon terminals of corticocortical or intracortical fibers seem to apply VGluT1 for glutamate uptake. This complementary distribution might suggest that the two VGluTs have an as yet unknown difference in functions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources