Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;37(5):786-90.
doi: 10.1053/jpsu.2002.32288.

Intestinal energy metabolism after ischemia-reperfusion: Effects of moderate hypothermia and perfluorocarbons

Affiliations

Intestinal energy metabolism after ischemia-reperfusion: Effects of moderate hypothermia and perfluorocarbons

Paisarn Vejchapipat et al. J Pediatr Surg. 2002 May.

Abstract

Purpose: This study investigated the roles of moderate hypothermia and extraluminal oxygenated perfluorcarbon (PFC) on intestinal metabolism after ischemia-reperfusion.

Methods: A model of 30-minute intestinal ischemia followed by 60 minutes of reperfusion was used. The animals were maintained at either normothermia (36.5 to 37.5 degrees C) or moderate hypothermia (31 to 32 degrees C). Four groups of adult rats were studied (n = 8 per group): (A) sham at normothermia, (B) ischemia-reperfusion at normothermia, (C) ischemia-reperfusion at hypothermia and, (D) ischemia-reperfusion with extraluminal oxygenated PFC perfusion during ischemia at normothermia. Intestinal phosphocreatine, ATP and lactate levels were measured. Histologic changes in the intestine were evaluated.

Results: Intestinal ischemia-reperfusion at normothermia caused a marked reduction in phosphocreatine and ATP with an increase in lactate. Moderate hypothermia exerted beneficial effects by attenuating the depletion of high-energy phosphates and the elevation of lactate. Extraluminal PFC perfusion during ischemia failed to produce a protective effect on high-energy phosphates, although it reduced lactate accumulation. Moderate hypothermia significantly decreased the degree of mucosal damage.

Conclusions: Whole-body moderate hypothermia protects the small intestine from reperfusion injury as measured both biochemically and histologically. Extraluminal oxygenated PFC administration during ischemia did not protect the intestine from reperfusion injury in this model.

PubMed Disclaimer

Publication types

LinkOut - more resources