Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Winter;18(1):1-10.

Assessing the learning curve effect in health technologies. Lessons from the nonclinical literature

Affiliations
  • PMID: 11987432
Review

Assessing the learning curve effect in health technologies. Lessons from the nonclinical literature

Craig R Ramsay et al. Int J Technol Assess Health Care. 2002 Winter.

Abstract

Introduction: Many health technologies exhibit some from of learning effect, and this represents a barrier to rigorous assessment. It has been shown that the statistical methods used are relatively crude. Methods to describe learning curves in fields outside medicine, for example, psychology and engineering, may be better.

Methods: To systematically search non-health technology assessment literature (for example, PsycLit and Econlit databases) to identify novel statistical techniques applied to learning curves.

Results: The search retrieved 9,431 abstracts for assessment, of which 18 used a statistical technique for analyzing learning effects that had not previously been identified in the clinical literature. The newly identified methods were combined with those previously used in health technology assessment, and categorized into four groups of increasing complexity: a) exploratory data analysis; b) simple data analysis; c) complex data analysis; and d) generic methods. All the complex structured data techniques for analyzing learning effects were identified in the nonclinical literature, and these emphasized the importance of estimating intra- and interindividual learning effects.

Conclusion: A good dividend of more sophisticated methods was obtained by searching in nonclinical fields. These methods now require formal testing on health technology data sets.

PubMed Disclaimer

Publication types