Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 May;8(2):105-10.
doi: 10.1580/1080-6032(1997)008[0105:ottopi]2.3.co;2.

On the trail of potassium in heat injury

Affiliations
Review

On the trail of potassium in heat injury

R P Francesconi et al. Wilderness Environ Med. 1997 May.

Abstract

In both classical and exertional heatstroke and in various animal models of human heat injury, clinical manifestations have included observations of normokalemia, hyperkalemia, and hypokalemia. This review attempts to address these observations as well as the role of potassium and potassium depletion in heat injury with an emphasis on the integration of information from the level of transmembrane potassium transport mechanisms to systems physiology. Under moderate conditions of passive heat exposure or exercise in the heat, the adaptive capacity of the Na-K pump (Na+-K+ ATPase activity) and cotransport mechanisms can ordinarily accommodate the attendant increased efflux of intracellular K+ and influx of extracellular Na+ to maintain ionic equilibrium. Several factors affecting transmembrane K+ kinetics include protracted K+ deficiency, extreme hyperthermia, dehydration, and excessive exertion. These could elicit reduced membrane potentials and conductance, futile cycling of the Na-K pump with concomitant energy depletion and greatly increased metabolic heat production, reduced arteriolar vasodilation, altered neurotransmitter release, or cell swelling, each of which could contribute to the pathophysiology of heat injury. This review represents a preliminary attempt to link transmembrane K+ pathophysiology with clinical heat injury.

PubMed Disclaimer

LinkOut - more resources