Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 May 15;185(10):1417-24.
doi: 10.1086/340503. Epub 2002 Apr 22.

On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis

Affiliations
Free article
Comparative Study

On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis

Ing-Marie Jonsson et al. J Infect Dis. .
Free article

Abstract

Anchoring of Staphylococcus aureus surface protein to the cell wall is catalyzed by sortase, a transpeptidase. The contribution of staphylococcal surface proteins to establishment of infection was examined using a murine septic arthritis model. Intravenous inoculation of mice with the sortase-deficient mutant S. aureus strain SMK3 did not result in weight loss or severe septic arthritis, in contrast to the parent strain, S. aureus Newman. Direct inoculation of the sortase mutant into joint cavities also failed to cause severe synovitis or erosive arthritis. Furthermore, intravenous inoculation with staphylococci resulted in the rapid clearing of the sortase mutant from the bloodstream. This phenomenon demonstrates the involvement of host neutrophils; when these cells were depleted, sortase mutant staphylococci caused severe systemic infection, although not septic arthritis. These results suggest that sortase mutant staphylococci are significantly less virulent than the parent strain, Newman: the sortase mutant has decreased ability to reach target organs and, once there, to induce an inflammatory response.

PubMed Disclaimer

Publication types

MeSH terms