Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr;58(6):1227-39.
doi: 10.1016/s1386-1425(01)00713-2.

In vivo copper-mediated free radical production: an ESR spin-trapping study

Affiliations

In vivo copper-mediated free radical production: an ESR spin-trapping study

Maria B Kadiiska et al. Spectrochim Acta A Mol Biomol Spectrosc. 2002 Apr.

Abstract

Copper has been suggested to facilitate oxidative tissue injury through a free radical-mediated pathway analogous to the Fenton reaction. By applying the electron spin resonance (ESR) spin-trapping technique, evidence for hydroxyl radical formation in vivo was obtained in rats treated simultaneously with copper and ascorbic acid or paraquat. A secondary radical spin-trapping technique was used in which the hydroxyl radical formed the methyl radical upon reaction with dimethylsulfoxide. The methyl radical was then detected by ESR spectroscopy as its adduct with the spin trap phenyl-N-t-butyl- nitrone (PBN). In contrast, lipid derived radical was detected in vivo in copper-challenged, vitamin E and selenium-deficient rats. These findings support the proposal that dietary selenium and vitamin E can protect against lipid peroxidation and copper toxicity. Since copper excreted into the bile from treated animals is expected to be maintained in the Cu(I) state (by ascorbic acid or glutathione), a chelating agent that would redox-stablilize it in the Cu(I) state was used to prevent ex vivo redox chemistry. Bile samples were collected directly into solutions of bathocuproinedisulfonic acid, a Cu(I)-stabilizing agent, and 2,2'-dipyridyl, a Fe(II)-stabilizing agent. If these precautions were not taken, radical adducts generated ex vivo could be mistaken for radical adducts produced in vivo and excreted into the bile.

PubMed Disclaimer

LinkOut - more resources