Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov-Dec;65(5-6):265-70.
doi: 10.1054/plef.2001.0324.

Attenuation of oxalate-induced nephrotoxicity by eicosapentaenoate-lipoate (EPA-LA) derivative in experimental rat model

Affiliations

Attenuation of oxalate-induced nephrotoxicity by eicosapentaenoate-lipoate (EPA-LA) derivative in experimental rat model

M Lenin et al. Prostaglandins Leukot Essent Fatty Acids. 2001 Nov-Dec.

Abstract

Hyperoxaluria is one of the major risk factors for the formation of urinary calcium oxalate stones. Calcium oxalate crystals and their deposition have been implicated in inducing renal tubular damage. Lipoic acid (LA) and eicosapentaenoic acid (EPA) have been shown to ameliorate the changes associated with hyperoxaluria. This prompted us to investigate the nephroprotectant role of EPA-LA, a new derivative, in vivo in hyperoxaluric rats. Elevation in the levels of calcium, oxalate and phosphorus, the stone-forming constituents, were observed in calculogenic rats as a manifestation of crystal deposition. Tubular damage to the renal tissue was assessed byassaying the excretion of marker enzymes in the urine. Damage to the tubules was indicated by increased excretion of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transferase (gamma-GT), beta-Glucuronidase (beta-GLU) and N-Acetyl beta-D glucosaminidase (NAG). Fibrinolytic activity was found to be reduced. Administration of EPA, LA and EPA-LA reduced the tubular damage and decreased the markers of crystal deposition markedly, which was substantiated by the reduction in weight of bladder stone formed. Our results highlight that EPA-LA is the most effective drug in inhibiting stone formation and mitigating renal damage caused by oxalate toxicity, thus confirming it as a nephroprotectant. Further work in this direction is warranted to establish the therapeutic effectiveness of this new derivative.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources