Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May 15;168(10):4881-8.
doi: 10.4049/jimmunol.168.10.4881.

Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells

Affiliations

Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto)antigen-specific T cells

Jan D Lünemann et al. J Immunol. .

Abstract

TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, induces apoptosis in susceptible cells, which can be both malignant and nontransformed. Despite homologies among the death ligands, there are great differences between the TRAIL system on the one hand and the TNF and CD95 systems on the other hand. In particular, TRAIL-induced apoptosis differs between rodents and man. Studies on animal models of autoimmune diseases suggested an influence of TRAIL on T cell growth and effector functions. Because we previously demonstrated that TRAIL does not induce apoptosis in human (auto)antigen-specific T cells, we now asked whether TRAIL exhibits other immunoregulatory properties in these cells. Active TRAIL inhibited calcium influx through store-operated calcium release-activated calcium channels, IFN-gamma/IL-4 production, and proliferation. These effects were independent of APC, Ag specificity, and Th differentiation, and no differences were detected between healthy donors and multiple sclerosis patients. TRAIL affected neither the expression of the cell cycling inhibitor p27(Kip1) nor the capacity of T cells to produce IL-2 upon Ag rechallenge, indicating that signaling via TRAIL receptor does not induce T cell anergy. Instead, the TRAIL-induced hypoproliferation could be attributed to the down-regulation of the cyclin-dependent kinase 4, indicating a G(1) arrest of the cell cycle. Thus, although it does not contribute to mechanisms of peripheral T cell tolerance such as clonal anergy or deletion by apoptosis, TRAIL can directly inhibit activation of human T cells via blockade of calcium influx.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources