Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;64(2):115-26.
doi: 10.1006/jema.2001.0491.

Impacts of urban greenspace on offsetting carbon emissions for middle Korea

Affiliations

Impacts of urban greenspace on offsetting carbon emissions for middle Korea

Hyun-Kil Jo. J Environ Manage. 2002 Feb.

Abstract

Carbon dioxide is an important greenhouse gas and a major agent of climate change. This study quantified carbon (C) emissions from energy consumption and C storage and uptake by greenspace for three cities in middle Korea: Chuncheon, Kangleung, and Seoul. Carbon emissions were estimated using C emission coefficients for fossil fuels consumed. Carbon storage and uptake by woody plants were computed applying biomass equations and radial growth rates. The soils in Chuncheon were cored to analyze organic C storage. Annual C emissions were 37.0 t/ha/yr in Kangleung, 47.2 t/ha/yr in Chuncheon, and 264.9 t/ha/yr in Seoul. Mean C storage by woody plants ranged from 26.0 to 60.1 t/ha for natural lands within the study cities, and from 4.7 to 7.2 t/ha for urban lands (all land use types except natural and agricultural lands). Mean annual C uptake by woody plants ranged from 1.60 to 3.91 t/ha/yr for natural lands within the cities, and from 0.53 to 0.80 t/ha/yr for urban lands. There were no significant differences (95% confidence level) between the cities in C storage and uptake per ha for urban lands. Organic C storage in Chuncheon soils (to a depth of 60 cm) averaged 31.6 t/ha for natural lands and 24.8 t/ha for urban lands. Woody plants stored an amount of C equivalent to 6.0-59.1% of total C emissions within the cities, and annually offset total C emissions by 0.5-2.2%. Carbon storage in soils was 1.2 times greater than that by woody plants in Chuncheon. The C reduction benefits of woody plants were greater in Chuncheon and Kangleung, where areal distribution of natural lands was larger and the population density lower than in Seoul. Strategies to increase C storage and uptake by urban greenspace were explored.

PubMed Disclaimer

Publication types