Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;23(9):1921-30.
doi: 10.1016/s0142-9612(01)00318-0.

Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution

Affiliations

Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution

F Barrere et al. Biomaterials. 2002 May.

Abstract

Biomimetic calcium-phosphate (Ca-P) coatings were applied on Ti6Al4V by using simulated body fluids concentrated by a factor 5 (SBFx5). The production of SBFx5 solution was possible by decreasing the pH of the solution to approximately 6 using CO2 gas. The subsequent release of this mildly acidic gas led to a pH rise and thus, increasing supersaturation. After immersion for 5(1/2) h a Ca-P coating on Ti6Al4V plates and a precipitate simultaneously formed at pH = 6.8. Sodium chloride (NaCl) and hydrogencarbonate (HCO3) contents were studied in relation to CO2 release and coating formation by changing their individual concentration in SBFx5 solution. On one hand, NaCl-free or low NaCl-content SBFx5 solution led to the earlier aspecific precipitation in the solution than for SBFx5 solution. In contrast, Ca-P coating was formed later and was thinner than the coating obtained in regular SBFx5 solution. High ionic strength delayed precipitation and favored Ca-P heterogeneous nucleation on Ti6Al4V. On the other hand, HCO3- content increased the pH of the solution due to its buffering capacity and influenced the release rate of dissolved CO2. Thus, HCO3- content strongly affected the supersaturation and Ca-P structure. Furthermore, HCO3- favored the attachment of Ca-P mineral on Ti6Al4V by decreasing Ca-P crystal size resulting in a better physical attachment of Ca-P coating on Ti6Al4V substrate.

PubMed Disclaimer

LinkOut - more resources