Mechanisms used to dispose of progressively increasing alkali load in rats
- PMID: 11997321
- DOI: 10.1152/ajprenal.00006.2001
Mechanisms used to dispose of progressively increasing alkali load in rats
Abstract
Our objective was to describe the process of alkali disposal in rats. Balance studies were performed while incremental loads of alkali were given to rats fed a low-alkali diet or their usual alkaline ash diet. Control groups received equimolar NaCl or KCl. Virtually all of the alkali was eliminated within 24 h when the dose exceeded 750 micromol. The most sensitive response to alkali input was a decline in the excretion of NH(4)(+). The next level of response was to increase the excretion of unmeasured anions; this rise was quantitatively the most important process in eliminating alkali. The maximum excretion of citrate was approximately 70% of its filtered load. An even higher alkali load augmented the excretion of 2-oxoglutarate to >400% of its filtered load. Only with the largest alkali load did bicarbonaturia become quantitatively important. We conclude that renal mechanisms eliminate alkali while minimizing bicarbonaturia. This provides a way of limiting changes in urine pH without sacrificing acid-base balance, a process that might lessen the risk of kidney stone formation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources