Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;97(1):1-8.
doi: 10.1007/s395-002-8381-2.

Angiotensin II-induced upregulation of MAP kinase phosphatase-3 mRNA levels mediates endothelial cell apoptosis

Affiliations

Angiotensin II-induced upregulation of MAP kinase phosphatase-3 mRNA levels mediates endothelial cell apoptosis

Lothar Rössig et al. Basic Res Cardiol. 2002 Jan.

Abstract

Angiotensin II (Ang II) is central to the pathobiology of atherosclerosis. In endothelial cells (EC), Ang II induces apoptosis. The MAP kinase ERK1/2 plays a key role in regulating cell survival. We therefore investigated the effect of Ang II on ERK1/2. Incubation of EC with Ang II led to the dephosphorylation of ERK1/2 (43% of control). To characterize the phosphatase involved, we investigated the effect of Ang II on MAP kinase phosphatase expression. Ang II induced MAP kinase phosphatase-3 (MKP-3) mRNA levels to about 2-fold, whereas MKP-1 expression was not affected. Transfection with a dominant negative MKP-3 construct (dnMKP-3mt) prevented the Ang II-induced ERK1/2 dephosphorylation and apoptosis in EC (p < 0.001). ERK1/2 inactivation has been shown to result in the dephosphorylation and proteasomal degradation of the antiapoptotic protein Bcl-2. Ang II induced the degradation of Bcl-2 wild type, whereas the dephosphorylation-resistant Bcl-2 construct mimicking phosphorylation by ERK1/2 was resistant to Ang II stimulation. These results indicate that Ang II-induced apoptosis signaling in human EC is mediated via MKP-3-dependent dephosphorylation of ERK1/2, which in turn leads to the degradation of Bcl-2.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources