Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May 9;417(6885):156-9.
doi: 10.1038/417156a.

Terahertz semiconductor-heterostructure laser

Affiliations

Terahertz semiconductor-heterostructure laser

Rüdeger Köhler et al. Nature. .

Abstract

Semiconductor devices have become indispensable for generating electromagnetic radiation in everyday applications. Visible and infrared diode lasers are at the core of information technology, and at the other end of the spectrum, microwave and radio-frequency emitters enable wireless communications. But the terahertz region (1-10 THz; 1 THz = 10(12) Hz) between these ranges has remained largely underdeveloped, despite the identification of various possible applications--for example, chemical detection, astronomy and medical imaging. Progress in this area has been hampered by the lack of compact, low-consumption, solid-state terahertz sources. Here we report a monolithic terahertz injection laser that is based on interminiband transitions in the conduction band of a semiconductor (GaAs/AlGaAs) heterostructure. The prototype demonstrated emits a single mode at 4.4 THz, and already shows high output powers of more than 2 mW with low threshold current densities of about a few hundred A cm(-2) up to 50 K. These results are very promising for extending the present laser concept to continuous-wave and high-temperature operation, which would lead to implementation in practical photonic systems.

PubMed Disclaimer

LinkOut - more resources