Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution
- PMID: 12000971
- DOI: 10.1038/nature752
Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution
Abstract
In bacteria, the binding of a single protein, the initiation factor sigma, to a multi-subunit RNA polymerase core enzyme results in the formation of a holoenzyme, the active form of RNA polymerase essential for transcription initiation. Here we report the crystal structure of a bacterial RNA polymerase holoenzyme from Thermus thermophilus at 2.6 A resolution. In the structure, two amino-terminal domains of the sigma subunit form a V-shaped structure near the opening of the upstream DNA-binding channel of the active site cleft. The carboxy-terminal domain of sigma is near the outlet of the RNA-exit channel, about 57 A from the N-terminal domains. The extended linker domain forms a hairpin protruding into the active site cleft, then stretching through the RNA-exit channel to connect the N- and C-terminal domains. The holoenzyme structure provides insight into the structural organization of transcription intermediate complexes and into the mechanism of transcription initiation.
Similar articles
-
Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution.Science. 2002 May 17;296(5571):1280-4. doi: 10.1126/science.1069594. Science. 2002. PMID: 12016306
-
Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex.Science. 2002 May 17;296(5571):1285-90. doi: 10.1126/science.1069595. Science. 2002. PMID: 12016307
-
Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.J Mol Biol. 2001 Jun 8;309(3):561-72. doi: 10.1006/jmbi.2001.4690. J Mol Biol. 2001. PMID: 11397080
-
Bacterial RNA polymerases: the wholo story.Curr Opin Struct Biol. 2003 Feb;13(1):31-9. doi: 10.1016/s0959-440x(02)00005-2. Curr Opin Struct Biol. 2003. PMID: 12581657 Review.
-
[Structure of the bacterial RNA polymerase holoenzyme].Tanpakushitsu Kakusan Koso. 2003 Jan;48(1):1-8. Tanpakushitsu Kakusan Koso. 2003. PMID: 12607258 Review. Japanese. No abstract available.
Cited by
-
Multisubunit RNA Polymerases of Jumbo Bacteriophages.Viruses. 2020 Sep 23;12(10):1064. doi: 10.3390/v12101064. Viruses. 2020. PMID: 32977622 Free PMC article. Review.
-
Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.Mol Biol Cell. 2012 Nov;23(21):4297-312. doi: 10.1091/mbc.E12-04-0331. Epub 2012 Sep 12. Mol Biol Cell. 2012. PMID: 22973055 Free PMC article.
-
An Optimized Workflow for the Discovery of New Antimicrobial Compounds Targeting Bacterial RNA Polymerase Complex Formation.Antibiotics (Basel). 2022 Oct 21;11(10):1449. doi: 10.3390/antibiotics11101449. Antibiotics (Basel). 2022. PMID: 36290107 Free PMC article.
-
TFIIB is only ∼9 Å away from the 5'-end of a trimeric RNA primer in a functional RNA polymerase II preinitiation complex.PLoS One. 2015 Mar 16;10(3):e0119007. doi: 10.1371/journal.pone.0119007. eCollection 2015. PLoS One. 2015. PMID: 25774659 Free PMC article.
-
New insights into the mechanism of initial transcription: the T7 RNA polymerase mutant P266L transitions to elongation at longer RNA lengths than wild type.J Biol Chem. 2012 Oct 26;287(44):37352-61. doi: 10.1074/jbc.M112.370643. Epub 2012 Aug 24. J Biol Chem. 2012. PMID: 22923611 Free PMC article.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases