Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 19;277(29):26066-73.
doi: 10.1074/jbc.M203397200. Epub 2002 May 2.

The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases. Evidence for flavin-catalyzed reduction of adenosine 5'-phosphosulfate

Affiliations
Free article

The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases. Evidence for flavin-catalyzed reduction of adenosine 5'-phosphosulfate

Günter Fritz et al. J Biol Chem. .
Free article

Abstract

The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase catalyzes reversibly the 2-electron reduction of APS to sulfite and AMP, a key step in the biological sulfur cycle. APS reductase from one archaea and three different bacteria has been purified, and the molecular and catalytic properties have been characterized. The EPR parameters and redox potentials (-60 and -520 mV versus NHE) have been assigned to the two [4Fe-4S] clusters I and II observed in the three-dimensional structure of the enzyme from Archaeoglobus fulgidus (Fritz, G., Roth, A., Schiffer, A., Büchert, T., Bourenkov, G., Bartunik, H. D., Huber, H., Stetter, K. O., Kroneck, P. M. H., and Ermler, U. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 1836-1841). Sulfite binds to FAD to form a covalent FAD N(5)-sulfite adduct with characteristic UV/visible spectra, in accordance with the three-dimensional structure of crystalline enzyme soaked with APS. UV/visible monitored titrations reveal that the substrates AMP and APS dock closely to the FAD cofactor. These results clearly document that FAD is the site of the 2-electron reduction of APS to sulfite and AMP. Reaction of APS reductase enzyme with sulfite and AMP leads to partial reduction of the [4Fe-4S] centers and formation of the anionic FAD semiquinone. Thus, both [4Fe-4S] clusters function in electron transfer and guide two single electrons from the protein surface to the FAD catalytic site.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources