Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May-Jun;22(3):651-71.
doi: 10.1148/radiographics.22.3.g02ma11651.

Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation

Affiliations

Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation

Joachim Lotz et al. Radiographics. 2002 May-Jun.

Abstract

Phase-contrast magnetic resonance (MR) imaging is a well-known but undervalued method of obtaining quantitative information on blood flow. Applications of this technique in cardiovascular MR imaging are expanding. According to the sequences available, phase-contrast measurement can be performed in a breath hold or during normal respiration. Prospective as well as retrospective gating techniques can be used. Common errors in phase-contrast imaging include mismatched encoding velocity, deviation of the imaging plane, inadequate temporal resolution, inadequate spatial resolution, accelerated flow and spatial misregistration, and phase offset errors. Flow measurements are most precise if the imaging plane is perpendicular to the vessel of interest and flow encoding is set to through-plane flow. The sequence should be repeated at least once, with a high encoding velocity used initially. If peak velocity has to be estimated, flow measurement is repeated with an adapted encoding velocity. The overall error of a phase-contrast flow measurement comprises errors during prescription as well as errors that occur during image analysis of the flow data. With phase-contrast imaging, the overall error in flow measurement can be reduced to less than 10%, an acceptable level of error for routine clinical use.

PubMed Disclaimer

MeSH terms

LinkOut - more resources