Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May-Jun;5(3):224-47.
doi: 10.1007/s10024-001-0142-y.

Enteric nervous system: development and developmental disturbances--part 1

Affiliations
Review

Enteric nervous system: development and developmental disturbances--part 1

Donald Newgreen et al. Pediatr Dev Pathol. 2002 May-Jun.

Abstract

This review, which is presented in two parts, summarizes and synthesizes current views on the genetic, molecular, and cell biological underpinnings of the early embryonic phases of enteric nervous system (ENS) formation and its defects. In the first part, we describe the critical features of two principal abnormalities of ENS development: Hirschsprung's disease (HSCR) and intestinal neuronal dysplasia type B (INDB) in humans, and the similar abnormalities in animals. These represent the extremes of the diagnostic spectrum: HSCR has agreed and unequivocal diagnostic criteria, whereas the diagnosis and even existence of INDB as a clinical entity is highly controversial. The difficulties in diagnosis and treatment of both these conditions are discussed. We then review the genes now known which, when mutated or deleted, may cause defects of ENS development. Many of these genetic abnormalities in animal models give a phenotype similar or identical to HSCR, and were discovered by studies of humans and of mouse mutants with similar defects. The most important of these genes are those coding for molecules in the GDNF intercellular signaling system, and those coding for molecules in the ET-3 signaling system. However, a range of other genes for different signaling systems and for transcription factors also disturb ENS formation when they are deleted or mutated. In addition, a large proportion of HSCR cases have not been ascribed to the currently known genes, suggesting that additional genes for ENS development await discovery.

PubMed Disclaimer

MeSH terms